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Consldered 1s the problem of the construction of the supersonic part of & noz-
zle with a maximum thrust. The first exact solutlon, 1n closed form, of
this problem for an axlally symmetric supersonic flow was given by Shmyglev-
skii [1]. The end points of the nozzle generatrlx were considered given.
For the explicit description of the functional and auxiliary conditions, use
was made of the translition from the contour of the body to the boundaries of
the region or influence.

In the present work the supersonic flow in the nozzle 1s assumed to be
spatial. The differential equations of flow are used as relations between
functions. This approach to the solution of variational problems of gas
dynamics was used by Guderley and Armitage [2] and by Sirazetdinov [3%. The
necessary conditions for an extremum which are obtained in this formulation
of the problem represent a boundary value problem for a system of nonllinear
partial differenhtial equatione with conditlons on the entire surface which
bounds the region of influence. An analogous result was cbtalned, for exam-
ple, in [2] in the determination of an axlally symmetric nozzle of maximum
thrust with arbitrary isoperimetric conditions on the walls.

Under sertain restrictions which are related only to the contour of the
outlet of the nozzle, there exists a class of spatial optimum solutions in
which the number of inde endent variables of the boundary value problem can
be decreased, For an axially symmetric flow this was done in paper [4].

1. PFormualation of the variational problem., Let u, v, and p be the
projections of the velocity on the axes of & Cartesian coordinate system .,
v, z . For the description of a stationary irrotational isentropic flow of
a nonviscous nonheatconducting gas, with arbitrary thermodynamic propertles,
it is sufficient to use three equations (two projections of the vortex and
the equation of continuity):

Li=u, —w, =0, Ly=v,—u,=0
Ly = (pu)s + (p0), + (pw), = 0

Here, and in what follows, the subscripts x, y and z denote partial
derivatives. The density p , the pressure P , and the sound veloclty g ,
are known functions of the absolute value of the velocity. Hereby,
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%:azd—:z—udu—vdv——wdw (1.2)

For later use, we introduce two "stream functions" y{x,y,z) and x{x,y,z)
of the spatlal flow by means of Formulas

D %
pu — Dy 2 = PyX: — P, %, (uvw, zyz) (1.3)

Here the symbol (uvw, xyz) indicates a cyclic transposition.

It 1s not difficult to verify that Equation 1,= O of the system (1.1)
is implied by the system (1.3). Hence any two equations of (1.3) permlt one
to construct the stream functions § and y for any known flow fleld.

Let us consider the differential equations of the stream lines

dx dy dz
o v ow (1.4)

Taking (1.3) into consideration we can perform the integration of {(1.4).
The calculations show that along the stream lines

y,r Y = const, 7 = const (1.5)

Next, let us conslider the varia-
tional problem.

Suppose that the parameters of the

E“"-—-— initial flow are given by the charac-
teristic surface I, . This surface
(Fig.1) passes through the given con-
2 tour T, . Let another contour T be
Fig. 1 given. We shall indicate by the letter

¥ an unknown closing characteristic
surface which passes through I'. The contour 1 1s the curve in which ¢
and 3, intersect. Let us denote by ¢ the flow surface f(x,y,z) = O
which passes through the contours T, and T . On this surface

ucosnz + vcosny + weosnz = 0 (1.6)

Here n 1s the normal to the surface o .

If we denote by P, the exterior pressure then the thrust of the nozzle
in the direction x 1s given by the relation

T = SS (p — py) cos nzdo 1.7)

[+
In supersonic flow the distribution of the pressure p on ¢ depends
only on the region 1 bounded by the surfaces £,, £ and o .

Let us formulate the following variational problem: on the basis of a
given characteristic surface I, we are to find a flow surface ¢ whlch
passes through given contours T, and I and which yields an extremum of
the functional (1.7) under the differential relation (1.6) on ¢ , and the
differential relations (1.1) and (1.2) in the region r .
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2. Necessary .jonditions for an extremum, Let us denote by ¢ (Z, y, z),
hy(z,y, z), hy (2, y, z) and hy (2, y, z) the Lagrange multipliers. We con-
struct Expression

T° = SS [(p — po + cu) cos nz + cvcos ny + cw cos nzl do -+
[+]

+ §§ Ly + ALy 4 by dr @.1)

-

and require that 1t takes 6n an extremum &s we vary u, U, w and x, y, z
on the surface ¢ .

Hereby » and p will be functions of y, v and y , and in view of
{1.2) we have
o _ _ . pu pv pw .
6p = — pudu — pvdv— pwdw, Gp~——76u———a—260——ﬁéw (2.2)
Foliowing [ 2], we perform the variation of the surface and of the velo-
clties separately. The total variation 7° will be

6To = GT:v:const —+— 6T;:c0ﬂ5t

In the evaluation of 57€=@0na cne may consider three types. of represen-
tation of the function f(x, y, z) = 0O 1n explicit form. One may think of
s(x, ¥, 2) = 0O having been solved for x ; then y and z are considered
as independent variables.

The quantities x,, x, are partlal derivatives of x with resect to y
and 2z , respectively, and are obtalned from f(x, 178 z) = 0 under the
assumption that thls equation determines x as a function of y and

Furthermore, the symbols dc/ dx, dc/ dy, Oc [ @z will denote partial
derivatives of the function ,» on the surface ¢

In the example under consideration

dc de dc
’é;':cxy "agzcy"”'cxxy’ 'b“z"zcz‘*'cx?tz

Besides that, it 1s clear that
O:fy+fxxya Ozfz_f—fx‘zz

Thus, the argument x represents explicitly the surface ¢ 1in view of
Equation p{x, y, 2z} = O .

o
Let us evalg?te GTQZmonM by varying the form of the surface ¢ , and
let us set 6Tv=cmmt equal to zero

8Tr? gg [(p — po -1 cu) cos nx + cv cos ny + cw cos nz] do =

v=const — 8

=8 SS [—(p — Py + cw) + cvx, + cwz,] dydz =

= SS{[z px— (ew)s + (€0}, + (W) w, — 57 — o] x

vz |

X &z + ""g’j"’ + 2 dyaz = o
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The symbol g,, denotes here the projection of the surface ¢ on the
plane yz . Using Green's formula. and taking into account the fact that
§x = bn cos nx , we obtain

8T onst = SS — Ipye -+ (cw), + (cv), + (cw),] 6r cos® nxdo = 0

[
The integral of this expression, which has the form of a divergence, van-

ishes since the boundaries of the region of integration remain fixed.
The quantity cos nx 1s not equal to zero in general on the surface ¢

Hence, 1if 67£:$0n“ 1s to be zero it 1s necessary that we have the fol-
lowing relation on ¢ :
Dx + (cu)x + (Cv)y + (cw)z =0
Since Equations (1.1) and (1.2) are valid in 1 , the last displayed equa-
tion may be rewrltten as c C ¢
— puly, — pvu, — pwu, + pu (——) + pv(——) -+ pw (—) =
P /x ply P /2
¢ c ¢
= pu (-——u) -+ pv (————u) -+ pw(———u) =0 (2.3)
p x P y P z
The characteristic system of the linear homogeneous equation (2.3) coin-
cides with the differential equations of the stream lines (1.4). Along the
stream lines, ¢ = const and y = const by Formula (1.5). Thus, the gene-
ral solution of the linear homogeneous equation (2.3) has the form

——u=0@Wy, o c=plu+ O]
Here &(y, x) 1s an arbitrary function of ¢ and y .
X
o

On the flow surface the quantities § and
relation is given by ¢ = ¢(x) on the surface

are related. Suppose this
Then the variable multi-
plier o 1is given on the surface ¢ by Formula

c=p {u-+ O, x (2.4)

Now we obtain an expression for 87}=mony; , and ‘'we set it equal to zero

8T _const = RS [(6p + cbu) cos nz + cbv cos ny + cdw cos nzl do +-

[}
+ (e 10w, — @010 + By 189, — )] + s [Bpw), + (Bp2), +
T
= 2-5
+ (Spw) 1} dv = 0 (2.9)
Let us denote by Kk the normal to the characteristic surface of the first
famlily £ . On g we have
wcoskr + vecosky +wcoskz = a (2.6)
Making use of the Gauss-Ostrogradskii formula, we transform the second
integral of Expression (2.5) with the aild of integration by parts. Hereby,

we recall that the variatlions of the functions vanish on the given charac-
teristic surface £ . In view of {2.2) we now have
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G

ST —conss = SS(UIGu HV 80+ W,bw) do + Sz&( Ubu + Vo + W,bw) d5 +

+ SSS(U“S” + Vybv -+ Wybw) dt = 0 (2.7)

Equating to zero the expresslon 6y, 6v and 6y , we determine the
Lagrange multipliers on the surfaces ¢, & and in the volume T .

From the first integral of Formula (2.7), considering (1.6), we obtain
the following conditions which must be satisfied on the surface g :

= (— pu -+ ¢ + phsy) cos nx — hycos ny + hycosnz = 0
(— pv + hy) cos nz + (¢ + phg) cosny = 0 (2.8)
(— pw— hy) cos nx + (c + phg) cosnz = 0

i

U,
Vi
W,

1]

Let us introduce the notation
h h
M=wt+b, ==t dy=ut O+th 2.9)

In view of (1.6), (2.4) and (2.9), Equations (2.8) may now be rewritten
ae Aycos nz + Aycosny + Agcos nx = 0
— Ay cos nZ + Agcos ny = 0 (2.10)

— A, cosnz + Agcosnz = 0

The determinant 2 of the homogeneous system of equations (2.10), which
determine the quantities X,, A, and \;, 1s equal to - cos nx . On the
surface ¢ , the quantity cos nx -is, 1n general, not qual zero. Hence,
A, = Ag= Ag= O . Recalling (2.9), we find that on the surface of the nozzle
we have Equatlons

hy=—pw, hy=pv, hy=—{u-+ O, s} 2.11)

From the second integral of (2.7) and from (2.6) we obtain conditions

which must be satlsfied on the characteristic surface I

U, = hyp cos kx — hycos ky + hycoskz — hgpu / a =0

V, = hy cos kx + hgp cos ky — hgpv/a = 0
W, =— — hycos kz 4 hgp coskz — hypw/a = 0
This 1s a homogeneous system. Its determinant 1s zero. Hence, on ¢
it is sufficient that the following two conditions be fulfilled:

hycos kx + hyp cos ky — hpv/a = 0
(2.12)
— hycos kz + hsp cos kz —hgpw/a = 0

Finally, from the third integral of Expression (2.7) we obtain the con~
ditions which must be satisfled in the volume 1
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1
Us = hy; — hy + 9(1 —%)hsx—Pﬂhsv'—P%haz =0

aﬂ
uv v?
h

Vs =hae—p S5hse +p (1 —25) hoy — P 5 b = 0 (2.13)
a a

a?
2
W, E—‘hm——P%hsx —P Z—?hsu + e (1 _'1:',)2“) hs; = 0

Analysis shows that the system (2.13) for supersonic flow 1s of the hyper-
bolic type, and the characteristic directions coincide with the character-
istic directions of the equations of gas dynamics (1.1) and (1.2).

Thus, the variational problem of the determination of the nozzle surface
¢ possessing the maximum thrust and which passes through the contours T,
and T , has been reduced to & boundary value problem for & partial differ=-
entlal equation.

Indeed, let ¢ be some surface which 1s strztched over T, and T . On
the basis of a given initial flow on £, , and on the basis of the surface
0 , we determine, by means of the solution of the system (1.1)},(1.2), the
flow in the volume 1t , and also the characteristic surface of the first
family ¥ . Furthermore, with a given flow fleld and for a certain function
8[y(x), x] we compute the values of A, hz, hy on the surface ¢ by means
of Formuls (2.11). After that, by solving Cauchy's problem for Equations
(2.13) in the volume 7 , we find the values of h,, ha, ho o0 ¥ . If, in
addition, the condition (2.12) 1s satisfied on L , then the flow surface ¢
will yield the solution of the varlational problem,

3, Deoreasing the number of independent variables in the boundary value
problem @ [P (), %] = const. Let us project the characteristlc surface of
the first family ¥ , which 1s stretched
2 over the contours T and [ , upon the plane

v yz . 1In Fig.2 the bounded doubly-connected

/’//i;/"—~_~_§\\\\\\\\ reglon D represents the projection of T

Z<::::> 7 upon the plane yg . The contours T and

k—/ I are projected on y and 1, respectlvely
Now we rewrite the conditions which are

Fig. 2 satisfied on the surface £ , whose equation
is written in the form oy, 2) —x =0 .

We shall use the notatlon

A=dVT+oe2+or (3.1)
«Then the two conditions of extremality (2.12) take the form
A h A h
vl = — P9, W=t P, (3.2)

and the condition of directions (2.6) becomes
—u+ v, twp, =A 3.3)

The surface T 1is the characteristic surface of the system (2.13). The
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conditlion of coincidence on this surface has the form

dhy ohsy A dhg ahq dhg
gz @ P a® (l) oy + ) pq)y oy P(Pz 6” =0
Taking into account (3.2), we may rewrite the condition of coincidence
on a P
z s ahlhs_ _ d{lzha - O (3.4)
az oy

Let us set @ [y (x), x] = ¢; = const on the surface ¢ . Next, we con-
sider the expressions for the Lagrange multipliers

h, = — pw, hy, = puv, hy = — (u + ¢,) (3.5)
These expressions have the remarkable property of satisfying the initial

Cauchy condition (2.11), and they can easily be shown to be a solution of
the system (2.13) because of the relations (1.1) and (1.2).

Substituting (3.5) into (3.1) to {3.4%), we obtain the following system of
equations for the determination of the extremal characteristic surface of

the first family: (3.6)
A:al/i+q)u2+q)z2:_u+mpy+wq’z
A Py A4 dvp(ui-ca1) | dwpl(u+cr))
+u+¢1’ T w +u+q * dy + 9z =0

Let us replace the unknown functions » and p» on £ by w and e

by means of Formulas
v = M COS &, w = o sin g, ¥+ w? = 0?
Eliminating 4 and taking into account the fact that p = p (u® + o?)
and g = a (u? + ©?%), we can transform the system (3.6) into

a
B o= O ey (3.7)
2u+ a . . 2u -+ ¢y
Py =@cosE Gy G =oesine Gems (38)
d cose (u + c1) wp dOsine(u-+tec)op
dy + 0z =0 (3 9)

This system yields the functions u(y,z), e(y,z), w{y,x) and o¢(y,2) on
£ . Let us analyze the systems (3.7) — (3.9).

The final relation (3.7) shows that in the space of the velocity hodo-
graph the surface T 1s representable as an axially symmetric surface with
v as axis of symmetry. Thus, the relation (3.7) permits one to consider
u on I 8s a known function of w , l.e. u = w{w)

In the determination of I it is necessary to satisfy the boundary con-
ditions. PFirstly, © must pass through the given contour I . This means
that in the ygz plane there 1s given the contour y and the values of ¢
on it. Secondly, the surface ¢ must pass through some contour 7 which
belongs to the given characteristic surface %, . This means that on some
contour ]} of the yz plane the relations (3.7) to (3.9) must be satisfied
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by the given values of the gas-dynamic function because of flow continuity.
In the sequel we shall solve the inverse problem: we will select on T,
some. contour I satisfyilng the relations (3.7) to (3.9), and by means of
(3.7) to (3.9) we will construct the surface I passing through the contour

I . After that we construct the contour I on ¥ by means of the values
of § = y{x) given on T, . The contour T will correspond to the selec-
ted contour [ .

Let us choose an arbltrary point on X, . The relation (3.7) permits us
to determine at once the contour f on I, , This determines also the con-

tour 1 on the yz plane and the values of ¢ on [ . With these data
one can evaluate the derivative dw/bs on 1 , where 8 1s the arc length
of 1 . On the other hand, the relations (3.8) determine ®, and ¢, on 1,
and, hence, also the derivative deg/dg . It 1s obvlous that in the general
case the values d@/ﬁs on 1 , evaluated by the first and second method,
will not coincide. This indicates that the problem has no solutlon in gene-
ral.

However, the problem can be solved 1f one assumes that there can occur a
break of the surface ¢ on the contour T,

In this case an infinite number of characteristic surfaces g,, may emerge
from the contour T, ., Each %,, is determined only by the given surface I,
and by an arbitrary fuﬁction 51(P1) chosen along T, (the spatial analog of
the Prandtl-Meyer flow). For the function 6,(?1) one may take, for example
a dihedral angle between two tangent planes to the surfaces £, and I, at polnts of
the contour T, . For an arbitrary chosen point of £, , we select a function
6, (5;) and thereby an initial characteristic surface I,,, such that on the con-
structed contour 1 the values of d¢ybs, evaluated by the flrst and second
method coincide. In this manner one constructs the required contour 7 and
determines the initial conditions for the solution of the system (3.7) -
(3.9).

The system of equations (3.7) to {3.9) can be reduced to a system of a
known type.

Let us introduce a new function V, by means of Formula
21.1. +Cl
— S A
Vo= 0=z e (3.10)
Since by (3.7), wu = ulw), the relation (3.10) can be considered as an
implicit determination of w = w(Vo) . This permits one to consider Expres-
sion
m(u—{—cl)
Po(Vo) = p—5-— (3.11)
as a function of V,.
Let us set
Ug =@y V=0, To=1Y, Y= 2 (Vo? = ue® + ve?) (3.12)
Equating the cross derivatives of Expression (3.8), we may rewrite the
system (3.8) - (3.9) in the form
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dup  dve _ Opplo Opove
Oys  dxy 0, Oy + dye 0 (3.13)

The system (3.13) describes plane irrotational "flows" of a compressible
fluld with a "potential” @ which is of the form of an extremal characteris-

tic of the surface £ . To continue the analogy, the "velocity of sound”
for this"flow" is computed by means of Formula
ay> = — Vopo / 0o’

In conclusion, the author expresses gratitude to Iu.D. Shmyglevkii for
his help in this work.
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